RapidArc Radiosurgery Bibliography*

Cranial: Metastatic Disease

Bohoudi O, Bruynzeel AM, Lagerwaard FJ, Cuijpers JP, Slotman BJ, Palacios MA. Isotoxic radiosurgery planning for brain metastases. Radiother Oncol. 2016 Aug;120(2):253-7. VU University Medical Center, Amsterdam, The Netherlands

* This bibliography is a comprehensive selection of articles but is not necessarily an exhaustive list of literature pertaining to RapidArc® radiosurgery.
Lau SK, Zhao X, Carmona R, Knipprath E, Simpson DR, Nath SK, Kim GY, Hattangadi JA, Chen CC, Murphy KT.
Frameless single-isocenter intensity modulated stereotactic radiosurgery for simultaneous treatment of multiple
Center, La Jolla, CA

Health System, Detroit, MI

Clark GM, Popple RA, Prendergast BM, Spencer SA, Thomas EM, Stewart JG, Guthrie BL, Markert JM, Fivеash JB.
Plan quality and treatment planning technique for single isocenter cranial radiosurgery with volumetric modulated arc

Wang JZ, Rice R, Mundt AJ, Sandhu A, Murphy KT. Feasibility and advantages of using flattening filter-free mode
at San Diego, San Diego, CA

Liepa Z, Auslands K, Apskalne D, Ozols R. Initial experience with using frameless image-guided radiosurgery for the

Wang JZ, Pawlicki T, Rice R, Mundt AJ, Sandhu A, Lawson J, Murphy KT. Intensity-modulated radiosurgery with
University of California, San Diego, La Jolla, CA

Clark GM, Popple RA, Young PE, Fivеash JB. Feasibility of single-isocenter volumetric modulated arc radiosurgery
Alabama at Birmingham, Birmingham, AL

Lagerwaard FJ, van der Hoorn EA, Verbakel WF, Haasbeek CJ, Slotman BJ, Senan S. Whole-brain radiotherapy
with simultaneous integrated boost to multiple brain metastases using volumetric modulated arc therapy. *Int J
Radiat Oncol Biol Phys.* 2009 Sep 1;75(1):253-9. VU University Medical Center, Amsterdam, The Netherlands

Cranial: Malignant Disease

Clark GM, McDonald AM, Nabors LB, Fathalla-Shaykh H, Han X, Willey CD, Markert JM, Guthrie BL, Bredel M,
Fivеash JB. Hypofractionated stereotactic radiosurgery with concurrent bevacizumab for recurrent malignant
University of Alabama at Birmingham, Birmingham, AL

Anand AK, Kumar P, Patir R, Vaishya S, Bansal AK, Chaudhoory AR, Punnakal AU, Malhotra H, Munjal RK.
Fractionated stereotactic radiosurgery with volumetric modulated arc therapy (RapidArc®) for reradiation in

Cranial: Benign Disease

Clinical efficacy and safety of surface imaging guided radiosurgery (SIG-RS) in the treatment of benign skull base tumors.

Milano, Italy

Judy K, Shi W. Tumor volume threshold for achieving improved conformity in VMAT and GammaKnife® stereotactic
radiosurgery for vestibular schwannoma. *Radiat Oncol.* 2015 May; 112(1):229-34. Thomas Jefferson University,
Philadelphia, PA

Swamy ST, Radha CA, Arun G, Kathirvel M, Subramanian S. Planning and Dosimetric Study of Volumetric Modulated
Arc Based Hypofractionated Stereotactic Radiotherapy for Acoustic Schwannoma - 6MV Flattening Filter Free

appraisal of RapidArc® radiosurgery with flattening filter free photon beams for benign brain lesions in comparison
to GammaKnife®, a treatment planning study. *Radiat Oncol.* 2014 May 21;9:119. Oncology Institute of Southern
Switzerland, Bellinzona, Switzerland

Lagerwaard FJ, Meijer OW, van der Hoorn EA, Verbakel WF, Slotman BJ, Senan S. Volumetric modulated arc
radiosurgery for vestibular schwannomas. *Int J Radiat Oncol Biol Phys.* 2009 Jun 1;74(2):610-5. VU University Medical
Center, Amsterdam, The Netherlands
Cranial: Neurovascular Disease

Cranial: General Radiosurgery

Head & Neck

Spine

Yang J, Ma L, Wang XS, Xu WX, Cong XH, Xu SP, Ju ZJ, Du L, Cai BN, Yang J. Dosimetric evaluation of 4 different treatment modalities for curative-intent stereotactic body radiation therapy for isolated thoracic spinal metastases. Med Dosim. 2016 Summer;41(2):105-12. First Affiliated Hospital of Xinxiang Medical University, Henan, China

Yang J, Ma L, Wang XS, Xu WX, Cong XH, Xu SP, Ju ZJ, Du L, Cai BN, Yang J. Dosimetric evaluation of 4 different treatment modalities for curative-intent stereotactic body radiation therapy for isolated thoracic spinal metastases. Med Dosim. 2016 Summer;41(2):105-12. First Affiliated Hospital of Xinxiang Medical University, Henan, China

Chae SM, Lee GW, Son SH. The effect of multileaf collimator leaf width on the radiosurgery planning for spine lesion treatment in terms of the modulated techniques and target complexity. Radiat Oncol. 2014 Mar 8;9:72. Catholic University of Korea, Incheon, Korea

Kuijper IT, Dahele M, Senan S, Verbakel WF. Volumetric modulated arc therapy versus conventional intensity modulated radiation therapy for stereotactic spine radiotherapy: a planning study and early clinical data. Radiother Oncol. 2010 Feb;94(2):224-8. VU University Medical Center, Amsterdam, The Netherlands

Thoracic

Pan CH, Shiau AC, Li KC, Hsu SH, Liang JA. The irregular breathing effect on target volume and coverage for lung stereotactic body radiotherapy. J Appl Clin Med Phys. 2019 Jul;20(7):109-120 China Medical University Hospital, Taichung, Taiwan

Kuijper IT, Dahele M, Senan S, Verbakel WF. Volumetric modulated arc therapy versus conventional intensity modulated radiation therapy for stereotactic spine radiotherapy: a planning study and early clinical data. Radiother Oncol. 2010 Feb;94(2):224-8. VU University Medical Center, Amsterdam, The Netherlands

Thoracic

Pan CH, Shiau AC, Li KC, Hsu SH, Liang JA. The irregular breathing effect on target volume and coverage for lung stereotactic body radiotherapy. J Appl Clin Med Phys. 2019 Jul;20(7):109-120 China Medical University Hospital, Taichung, Taiwan

Zhang JY, Lu JY, Wu LL, Hong DL, Ma CC, Peng X, Lin ZX. A dosimetric and treatment efficiency evaluation of stereotactic body radiation therapy for peripheral lung cancer using flattening filter free beams. Oncotarget. 2016 Nov 8;7(45):73792-73799 Cancer Hospital of Shantou University Medical College, Shantou, China

Lu JY, Lin Z, Lin PX, Huang BT. Optimizing the flattening filter free beam selection in RapidArc®-based stereotactic body radiotherapy for Stage I lung cancer. Br J Radiol. 2015 Sep;88(1053):20140827. Second Affiliated Hospital of Shantou University Medical College, Shantou, China

Huang BT, Lu JY, Lin PX, Chen JZ, Kuang Y, Chen CZ. Comparison of Two RapidArc® Delivery Strategies in Stereotactic Body Radiotherapy of Peripheral Lung Cancer with Flattening Filter Free Beams. PLoS One. 2015 Jul 1;10(7):e0127501. Shantou University Medical College, Shantou, Guangdong, China

Ong CL, Palma D, Verbakel WF, Slotman BJ, Senan S. Stereotactic radiotherapy for peripheral lung tumors: a comparison of volumetric modulated arc therapy with 3 other delivery techniques. Radiother Oncol. 2010 Dec;97(3):437-42. VU University Medical Center, Amsterdam, The Netherlands
Gastrointestinal

Shen S, Jacob R, Bender LW, Duan J, Spencer SA. A technique using 99mTc-mebrofenin SPECT for radiotherapy treatment planning for liver cancers or metastases. Med Dosim. 2014 Spring;39(1):7-11. The University of Alabama at Birmingham, Birmingham, AL

Genitourinary

Lin YW, Lin LC, Lin KL. The early result of whole pelvic radiotherapy and stereotactic body radiotherapy boost for high-risk localized prostate cancer. Front Oncol. 2014 Oct 31;4:278. Kaohsiung Medical University, Kaohsiung, Taiwan

Gynecology

General SRS & SBRT

Physics and Dosimetry

Seppala J, Sulamor S, Kulkama J, Mali P, Minn H. A dosimetric phantom study of dose accuracy and build-up effects using IMRT and RapidArc® in stereotactic irradiation of lung tumours. Radiat Oncol. 2012 May 31;7:79. Turku University Hospital, Turku, Finland

Intended Use Summary

Varian Medical Systems’ linear accelerators are intended to provide stereotactic radiosurgery and precision radiotherapy for lesions, tumors, and conditions anywhere in the body where radiation treatment is indicated.

Safety Statement

Radiation treatments may cause side effects that can vary depending on the part of the body being treated. The most frequent ones are typically temporary and may include, but are not limited to, irritation to the respiratory, digestive, urinary or reproductive systems, fatigue, nausea, skin irritation, and hair loss. In some patients, they can be severe. Treatment sessions may vary in complexity and time. Radiation treatment is not appropriate for all cancers.