HD120™ MLC High Definition Multileaf Collimator Bibliography*

Chae SM, Lee KW, Son SH. Dosimetric impact of multileaf collimator leaf width according to sophisticated grade of technique in the IMRT and VMAT planning for pituitary adenoma lesion. Oncotarget. 2016 Nov 22;7(47):78119-78126. St. Mary's Hospital, Seoul, South Korea

Park JM, Park SY, Kim JH, Carlson J, Kim JI. The effect of extremely narrow MLC leaf width on the plan quality of VMAT for prostate cancer. Radiat Oncol. 2016 Jun 23;11:85 Seoul National University Hospital, Seoul, South Korea

* This bibliography is a comprehensive selection of articles but is not necessarily an exhaustive list of literature pertaining to SRS and SBRT
Tanny S, Sperling N, Parsai EI. **Correction factor measurements for multiple detectors used in small field dosimetry on the Varian Edge® radiosurgery system.** *Med Phys.* 2015 Sep;42(9):S370–S6. University of Toledo Medical Center, Toledo, OH

Subramanian SV, Subramani V, Thirumalai Swamy S, Gandhi A, Chilukuri S, Kathirvel M. **Is 5 mm MMLC suitable for VMAT-based lung SBRT? A dosimetric comparison with 2.5 mm HDMLC using RTOG-0813 treatment planning criteria for both conventional and high-dose flattening filter-free photon beams.** *J Appl Clin Med Phys.* 2015 Jul 8;16(4):S415. Bharathiar University, Coimbatore, India

Serna A, Puchades V, Mata F, Ramos D, Alcaraz M. **Influence of multi-leaf collimator leaf width in radiosurgery via volumetric modulated arc therapy and 3D dynamic conformal arc therapy.** *Phys Med.* 2015 May;31(3):S93–S6, Santa Lucia University Hospital, Murcia, Spain

Kim Ji, Park SY, Kim HJ, Kim JH, Ye SJ, Park JM. **The sensitivity of gamma-index method to the positioning errors of high-definition MLC in patient-specific VMAT QA for SBRT.** *Radiat Oncol.* 2014 Jul 28;9:167. Seoul National University Hospital, Seoul, South Korea

Chae SM, Lee GW, Son SH. **The effect of multileaf collimator leaf width on the radiosurgery planning for spine lesion treatment in terms of the modulated techniques and target complexity.** *Radiat Oncol.* 2014 Mar 8;9(1):72. St. Mary’s Hospital, Catholic University of Korea, Incheon, South Korea

Wang L, Kielar KN, Mok E, Hsu A, Dieterich S, Xing L. **An end-to-end examination of geometric accuracy of IGRT using a new digital accelerator equipped with onboard imaging system.** *Phys Med Biol.* 2012 Feb 7;57(3):S757–69. Stanford University Medical Center, Palo Alto, CA

Ohtakara K, Hayashi S, Tanaka H, Hoshi H. Dosimetric comparison of 2.5 mm vs. 3.0 mm leaf width micro-multileaf collimator-based treatment systems for intracranial stereotactic radiosurgery using dynamic conformal arcs: implications for treatment planning. Jpn J Radiol. 2011 Nov;29(9):630-38. Gifu University Graduate School of Medicine, Gifu, Japan

Intended Use Summary
Varian Medical Systems' linear accelerators are intended to provide stereotactic radiosurgery and precision radiotherapy for lesions, tumors, and conditions anywhere in the body where radiation treatment is indicated.

Safety Statement
Radiation treatments may cause side effects that can vary depending on the part of the body being treated. The most frequent ones are typically temporary and may include, but are not limited to, irritation to the respiratory, digestive, urinary or reproductive systems, fatigue, nausea, skin irritation, and hair loss. In some patients, they can be severe. Treatment sessions may vary in complexity and time. Radiation treatment is not appropriate for all cancers.

© 2012, 2014, 2015, 2018 Varian Medical Systems, Inc. All rights reserved. Varian, Varian Medical Systems, and Edge and TrueBeam are registered trademarks, and HD120 and Novalis Tx are trademarks of Varian Medical Systems, Inc.